SEMESTRAL			
Time:	10:00-13:00, May 11, 2022.	Course name:	Algebra II
Degree:	MMath.	Year:	1 st Year, 2 nd Semester; 2021–2022.
Course instructor:	Ramdin Mawia.	Total Marks:	60.

Attempt four of the following problems, including problems nº 3 & nº 4.

GROUP THEORY

- 1. Let p be a prime such that 4|p-1. Describe all groups of order 4p (up to isomorphism). 15
- 2. Define a solvable group. Show that any group of order p^4q^n is solvable, where p < q are odd primes. 15
- 3. Decide whether the following statements are true or false, with brief but complete justifications (any five): 15
 - (a) If G is a group of order n and d is a divisor of n, then G has a subgroup of order d.
 - (b) A cyclic group may have exactly 14 generators.
 - (c) If a finite group G acts freely and transitively on a finite set X, then G and X have the same cardinality.
 - (d) The number of Sylow *p*-subgroups of $GL_2(\mathbb{F}_p)$ is p+1.
 - (e) A finite group can be equal to the union of conjugates of a proper subgroup.
 - (f) If $1 \to F \to E \to G \to 1$ is a short exact sequence of groups with F and G cyclic, then E is necessarily abelian.
 - (g) If P and Q are Sylow p-subgroups of G with $|P| = |Q| = p^3$ and $|P \cap Q| \ge p^2$, then P = Q.

GALOIS THEORY

- 4. When do we say that a field extension is separable?
 - (a) Define the separable degree and prove that it divides the degree of the extension (for finite extensions).
 - (b) Is it true that every finite extension of a finite field is separable? Justify.
- 5. Give two equivalent definitions of a Galois extension (without proving that they are indeed equivalent). State and prove the Fundamental Theorem of Galois Theory.
- 6. Give at least four equivalent definitions of a separable polynomial and prove their equivalence. What do we mean by the Galois group of such a polynomial? Find the Galois groups of two of the following polynomials, with justifications:
 - (a) $X^4 + 5X + 10 \in \mathbb{Q}[X]$.
 - (b) $X(X^2 + 20)(X^2 4) + 2 \in \mathbb{Q}[X].$
 - (c) $X^3 + 3X + 2 \in \mathbb{Q}[X]$.

7. State whether the following statements are true or false, with brief but complete justifications (any five): 15

- (a) Any finite extension of a finite field is cyclic (i.e., Galois with cyclic Galois group).
- (b) If $K = k[\alpha]$ is a simple *n*-radical extension (i.e., $\alpha^n \in k$) and if K contains a primitive n^{th} root of unity, then K/k is a cyclic extension.
- (c) The number $\cos(\pi/7)$ is constructible.
- (d) Roots of the polynomial $X(X^2 + 2022)(X^2 16) + 2 \in \mathbb{Q}[X]$ are expressible in radicals.
- (e) No finite field is algebraically closed.
- (f) The algebraic closure of \mathbb{Q} and that of $\mathbb{Q}[\sqrt{5}]$ are isomorphic.
- (g) -2 is a square in the field $\mathbb{Q}[\sqrt[4]{-3}]$.

15

15

15