SEMESTRAL

| Time: | 10:00-13:00, May 11, 2022. | Course name: | Algebra II |
| ---: | :--- | :--- | :--- | :--- |
| Degree: | MMath. | Year: | $1^{\text {st }}$ Year, $2^{\text {nd }}$ Semester; 2021-2022. |
| Course instructor: | Ramdin Mawia. | Total Marks: | 60. |

Attempt four of the following problems, including problems $\boldsymbol{n}^{\circ} 3 \boldsymbol{\&} \boldsymbol{n}^{o} 4$.

Group Theory

1. Let p be a prime such that $4 \mid p-1$. Describe all groups of order $4 p$ (up to isomorphism).
2. Define a solvable group. Show that any group of order $p^{4} q^{n}$ is solvable, where $p<q$ are odd primes.
3. Decide whether the following statements are true or false, with brief but complete justifications (any five):
(a) If G is a group of order n and d is a divisor of n, then G has a subgroup of order d.
(b) A cyclic group may have exactly 14 generators.
(c) If a finite group G acts freely and transitively on a finite set X, then G and X have the same cardinality.
(d) The number of Sylow p-subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ is $p+1$.
(e) A finite group can be equal to the union of conjugates of a proper subgroup.
(f) If $1 \rightarrow F \rightarrow E \rightarrow G \rightarrow 1$ is a short exact sequence of groups with F and G cyclic, then E is necessarily abelian.
(g) If P and Q are Sylow p-subgroups of G with $|P|=|Q|=p^{3}$ and $|P \cap Q| \geqslant p^{2}$, then $P=Q$.

Galois Theory

4. When do we say that a field extension is separable?
(a) Define the separable degree and prove that it divides the degree of the extension (for finite extensions).
(b) Is it true that every finite extension of a finite field is separable? Justify.
5. Give two equivalent definitions of a Galois extension (without proving that they are indeed equivalent). State and prove the Fundamental Theorem of Galois Theory.
6. Give at least four equivalent definitions of a separable polynomial and prove their equivalence. What do we mean by the Galois group of such a polynomial? Find the Galois groups of two of the following polynomials, with justifications:
(a) $X^{4}+5 X+10 \in \mathbb{Q}[X]$.
(b) $X\left(X^{2}+20\right)\left(X^{2}-4\right)+2 \in \mathbb{Q}[X]$.
(c) $X^{3}+3 X+2 \in \mathbb{Q}[X]$.
7. State whether the following statements are true or false, with brief but complete justifications (any five):
(a) Any finite extension of a finite field is cyclic (i.e., Galois with cyclic Galois group).
(b) If $K=k[\alpha]$ is a simple n-radical extension (i.e., $\alpha^{n} \in k$) and if K contains a primitive $n^{\text {th }}$ root of unity, then K / k is a cyclic extension.
(c) The number $\cos (\pi / 7)$ is constructible.
(d) Roots of the polynomial $X\left(X^{2}+2022\right)\left(X^{2}-16\right)+2 \in \mathbb{Q}[X]$ are expressible in radicals.
(e) No finite field is algebraically closed.
(f) The algebraic closure of \mathbb{Q} and that of $\mathbb{Q}[\sqrt{5}]$ are isomorphic.
(g) -2 is a square in the field $\mathbb{Q}[\sqrt[4]{-3}]$.
